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reason was probably due to misalignment of the electron gun.

Output power levels were found to be comparable to that ob-

tained with the old electron gun.

VI. CONCLUSIONS

A new cylindrical gun has been developed for a low-power

tunable gyrotron. In this gun, the electrons are emitted axially

rather than radially as in a conventional MIG. Transverse motion

of the electrons is caused by the small radial component of the

accelerating electric field.

A gun like this would be suitable for any gyrotrons which have

very high magnetic compression ratios. Such high-compression

ratios may arise in situations like ours where a small electron

beam is required. Although the” velocity spread in this gun is

rather high, for fixed-frequency operations, the electron-beam

quality could be improved further by optimization of the anode

geometry [12].

The new gun has been tested successfully in a tunable gyrotron

and has produced frequencies ranging from 93 to 250 GHz.

Controllable and stable operation was possible throughout the

whole range of frequencies.

The simple geometry of the cylindrical gun would perhaps

allow a grid to be added to make the gun operate in a space-charge

limited fashion. A space-charge limited gun would enable the

current to be adjusted more readily to control the output power

level; this is an advantage to a low-power source for spectro-

scopic purposes.
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Probe Mutual Impedance in a Rectangular Waveguide

A. ITTIPIBOON, MEMBER IEEE,

AND L. SHAFAL SENIOR MSMBER IEEE

Abstract —The mutoal impedance between two probes, arbitrarily located

on the broad walls of a rectangular waveguide, is derived by using the

reaction concept. This mutrraf impedance is found to depend on the

location and height of the probes and their separation dktance. For probes

of equal height, it reduces to the probe self impedance, as the probe

separation distance approaches zero. The convergence of the solution and

the effects of a terminating short circuit on the mutoal impedance are also

studied and discussed.

1. INTRODUCTION

The problem of post-like structures in a waveguide have been

studied by many investigators [1]– [5] who were interested in their

equivalent impedance. The equivalent circuits represent a power-

ful tool for investigation and design of microwave circuits, match-

ing transitions, and various filters. The couplings between wave-

guide obstacles were studied by Gruenberg [6] for posts of length

equaf to a waveguide height symmetrically located in the same

transverse plane, by Chang and Khan [7] for unsymmetrical cases

for posts without gaps, and by E1-Sayed [8] for unsymmetrical

cases for posts with gaps by using the variational principle. The

problem of multipost of the same length equal to a waveguide

height and with a gap in each post ,was studied by Joshi and

Cornick [9]–[10]. The structure was considered as a linear ~-port

network with an impedance matrix obtained by applying the

reaction concept. In the present investigation, we are mainly

interested in the coupling between two probes arbitrarily located

on the broad walls of a waveguide propagating only the dominant

mode. The probe impedance as seen by the probe was previously

obtained by Lewin [1], [11] and by Collin [12]; however, in this

paper, the mutual impedance is obtained by applying the reaction

concept [13]. Since the problem in a waveguide is eqivalent to the

problem of an antenna radiating in a closed space, the radiation

field of the probe can be expanded in terms of the eigenfunctions

which form the solution space of the region under consideration.

In the present case, the fields will be expanded in terms of the

rectangular waveguide modes. The method is generaf and can be

used to solve similar problems in waveguides of different cross

sections by selecting their respective eigenfunctions.
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drical reflector antenna. The input or received power is through

one end of a waveguide while the other end is terminated in a

short circuit or matched termination. The power is coupled to or

from a waveguide to the line-source radiators through a large

number of probes along the waveguide. The required aperture

distribution of the line source can be obtained by properly

adjusting the probe penetration into the waveguide which can be

calculated by treating the problem as a linear ~-port network.

Hence, it is necessary tha{ the probe mutual impedance is known.

II. MUTUAL IMPEDANCE ANALYSIS

The probe antennas to be analyzed are shown in Fig. 1. The

two probes are arbitrarily located on either the same or opposite

faces of the broad side of a rectangular waveguide which propa-

gates only the dominant mode. The probe diameter is assumed to

be very small, as compared to waveguide dimensions, so that the

surface current is angular-independent and can be represented by

a current filament. The input region of the probe is considered as

a small region of the probe having the property of causing a

voltage drop ZI, when a current I flows at the input end of the

probe.

By the reaction concept [13], the mutual impedance between

the two probes is given by

(-1)
‘-1) (E,, z,)= ~ ~o)l, (o) f~l”~z~x (1)

’21 = 1,(0)12 (o) 1-

where II(0) and 12(0) are the input currents at the first and

second probes, respectively, El is the radiation field of the first

probe at the location of the second probe in its absence, and 12 is

the current distribution on the second probe.

By the reciprocity theorem we have

(E1,12)=(E2,11). (2)

Hence

Z21 = 212. (3)

The exact current distribution on a probe can be obtained by

the similar technique as given by Lewin [1]. The integral equation

for the current distribution on the probe can be solved by the

eigenfunction expansion technique or by the moment method.

However, it can be shown that the mutual impedance given in (1)

is stationary [13] which implies that a first-order approximation

for the current gives a second-order approximation for the im-

pedance. The simple form of the current distribution which has

been successfully used by Collin [12] and Barrington [13] is given

by

I=~YIOsink 0(d-x)8(y-y ’), x<d

= o, x>d (4)

where d is the probe height and 8(-P – y‘) is the Dirac-delta

function representing the probe location at y‘ along the y-axis.

The current distribution as given in (4) will be used in the

following analysis.

A. Radiation Field of the First Probe

The mutual impedance Z21 as given in (1) can be calculated

when the radiation field El of the first probe at the second probe

is known. Since the region under consideration is a rectangular

waveguide, the radiation field of the first probe can be repre-

sented by the summation of the TE and TM modes of the

rectangular waveguide. However, instead of using the usuaf TE

and TM to the z-axis modes, an alternative mode that sets TE

and TM to the x-axis will be used. Since the probe current is in
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Fig. 1. Schematic diagram of probe antennas m a rectangular waveguide

Fig. 2. LongltudinaJ section of a wavegmde with two probes located on the

same broad wall

the x-direction, only TM, modes are excited. The dominant

mode TMXOI is equivalent to TEZOI.

The structure under consideration is shown in Fig. 2 where

region 1, z <0, is match-terminated, while region II, z >0, is

terminated at z = L. to a load with a reflection coefficient r. The

first probe of height dl is located at z = O and y = yl

current distribution on the first probe is given by

ll=~X1l sinkO(dl –x)S(y–yl), x<dl

= o, x>dl.

The field components in regions I and II can be obtained

The

(5)

from

the vector potentials A ( = i?X~) with ~ satisfying the scalar

Hehnholtz equation in each region. After applying the boundary

conditions which require the continuity of the tangential fields EX

and E,, and

H~– H~=Zlsin kO(dl–x)8(y –yl). (6)

The field components in regions I and II, with the time variation
eJ~tsuppressed throughout, can be written as

Am,,cos(~x)sin(~ y)eJkz (7a)

(7b)

in region I, while in region II
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<, = – j ~ ~ kZB~. [e-Jk:’ – reJkzf’-2LsJ]
~=on=l

.os(~~)sin(~~) (8b)

where

‘=={k’-(%’-(a’)’”=–.A,. (9)

A = BMH{l+ re–J2kz L. }n,n (lo)

211(l+re-J2k:L. )
A=mzn

()
sin T yl g.

jk, abc~ b
(11)

=1, m>l (12)

‘W’=[+?)’l[cos(yd’)-coskod’]’ ’13)
B. Mutual Impedance Calculation

Let the second probe of height d2 be located at y = y2 and at

a distance z = L from the first probe. The current distribution of

the second probe is given by

Zz=tiX12sin ko(d2-x)8(y-yl), x<d2

= o, x> d2. (14)

From (l), we have

(15)

Substituting 12(x) from (14) and E,, from (8a) with z = L, we

have after some simplifications

2qoko
Z’l =

=tm(*)tm(*)

.(e-JhzL + reJk.(L–2L) )

“Sin(wsin(w (16)

where q. = N/c.

For real ~, it is clear from the above equation that the mutual

resistance R ‘l is mainly from the dominant mode m = O and

n = 1 and is given by

--+%)+’)R21 =Re(Z21) = ab~~ko

.[cos(kzoL)+I’cos {kZO(L-2L,)}]

“Sinb)sin(m (17)

The mutual reactance, however, consists of the dominant and the

higher order modes and is given by

“’==tw(%?tm(%)

~ #&sin(k=OL)-I’sin {k=o(L-2L~)})

.(e-~mnL + re8~~(L-2L$} 1)sin(~yl)sin(~y2) (18)

where

(19)

When L is large, the double summation in (18) converges very

rapidly. However, when L is small, some modifications are

required to improve the rate of the convergence.

C. Mutual Impedance When L Approaches Zero

When L approaches zero, the mutual resistance is still given by

(17), while the mutual reactance in (18) can be modified to

improve the rate of convergence of the double summation. After

some modifications, the mutual reactance can be written as

X21 = ~
2~koa ‘a(*) tin(%)

[((
* ln2 cosh~–cos~(Yl+Y~)

)

{
–ln2 cosh~–cos~(yl–-y~)

})

_2e–(~/b)L
‘in(:yl)sin(:-y) ~

— ~(sin(k,OL)- I’sin{kzo(L -2 L,)}) sin(~y1)sin(~y2)

+$n=?34[%- be-::)L]sin(Yyl) sin(?-~),,

(~o{k,,,(L2+(y,-y,)2)1/2)

- ~o{km(L2 +(.P, + Y2)2)1’2})] (20)
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where

‘m=[(%)’-w’ (21)

The summations in (20) converge very rapidly since ~0~ -+ n ~/b

as n increases and KO is the modified Bessel function of the

second kind which decays very rapidly. The detail derivation of

(20) is given in the Appendix. When the two probes are located

on the same cross-sectional plane L = O, but different locations,

i.e., yl # y2, the mutual reactance is

X21 = *+$)+$)

h{~ ln2 l-cos~(y1+y2)).—

1
-ln2(l-cos;(yl -y2)))

(–‘?rr

‘2 l+k=Ob j (~~1)sin(&2)sin(2k=OL, ) sin

1
(Ko{kmly,- y,l}-Ko{kmly,+y,l} ~ (22)

For the speciaf case when two probes of equal height dl = d2

are located at yl = y2 = b/2 in a rectangular guide with short-cir-

cuit termination (J7 = – 1), R21 from (17) is reduced to

2qo
R,l=—

kodl
sin2 kzo L, d —

abk,o k. 2’
(23)

X21 from (20) can also be further simplified. It can easily be

shown as L ~ O that

1 ({~ ln2 cosh~ –cos~(yl + y2)
)

(
–ln2 cosh~–cos~(yl–y2)

))

Hcosh ~ + 1

=+ln

cosh ~ – 1

=ln~ (24)

2e-”’”/bsin(:~l) sin(;y2) =2(1-%) ‘2’)

&(sin(kzOL)-rsin{ k,0(L-2!L$)})

Z=&(k=OL(l+cos2kZOL, )-sin2kZOL~) (26)

~=~, , [~y - be-~~b)’] sin’(~)
,.

.

.=:5 , [% - be-::)’]”,,

This term can be approximated as [12]

.=:5 ,[~~- be-::b)’] = ; k:: f +
., ~= 3,5,7 n

=0.0259*. (2,)

Substituting (24)-(27) into (20), it is reduced to

X’l = ~
kodl

2~kOa ()
tanz ~

[

~(%)-2(1-%)-2%(l+cos
k; b’

- sin(2kZOL, )+0.0518—
+ k,ob #

no k, dl

= 2~koa ()
tan’ —

2

r

Equations (23) and (28) are approximately the same as the probe

self-impedance obtained by Collin [12] when L = r. Similarly,

this is also true for (23) and (22) when the second probe is

approaching the first probe located at yl = b/2. Hence, it can be

concluded that when two probes of equal height approach each

other, the mutual impedance is approaching the self-impedance.

III. Mu’ruAr- INWEDANCE WHEN Two PROBES ARE ON

THE OPPOSITE FACE

The problem considered in this section is similar to that in the

previous section. The first probe location remains the same as in

the previous case, but the second probe is located on the opposite
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t’

Fig. 3. Longitudinal section of a waveguide with two probes located on the

opposite broad walls.

face, as shown in Fig. 3. The radiation field components of the

first probe are still the same as those given in (7) and (8). The

current distribution on the second probe is given by

12=( –2x)12sin kO(x–dz)8(y–y2). (29)

Following the similar procedure as in the previous case, the

mutual resistance and reactance are given by

R21=~
abkzo k. ‘m(*) tm{:’a-d2))(cos(k,oL)

(= ) “ (:Y2)
+l’cos{ kZo(L-2L~)})sin ~yl sm

‘l=%tm(~)tm{:(a-d))

“[
*(sin(kzoL)-rsin {kzo(L-2L,)})

“Sin(%%sin(w

[

sin2
()

~ dl

–2k; ~ ~ l–
m=l,2,3 k: kodl

()
sin2 —

2,

[

l–(–l)rn-2sin2
()

~ d,

. 1+

2sin2 (~(a-d2))
)

[ )[Si112(~4) (-l) M+’+1-2sin2(~A)
. l–

kodl 1+

()
sin2 —

2-
2 sin2 {~(a-d,)]

)

.(e-PnmL+ reLLn(L-2L$))sin(~yl)sin(~y,). (31)

The double summation in (31) is rapidly convergent for large

values of L. As L approaches zero, (31) can be modified so that

the series is still rapidly convergent. Hence, for small L, Xzl is

given by

[({1
z ln2 cosh~–cos~(yl+yz).—

}

{
–ln2 cosh~–cos~(yl– y,)

))

–(27 ae-(~/b)~ + sin( k.oL)—
bk,o r

-l’sin{ k,o(L-2L,)}) sin(~y1)sin(~.vz)

(~,{km(L2+(y,-.v2)2)’/2)
(30)

- K,(kn(L2+( Y,+ Y2)2)1’2)].(32)

The summations in (32) converge very rapidly, since ~on -+ n m/b

for large n and K, is the modified Bessel function of the second

kind, which decays very rapidly.

IV. RESULTS

It was shown in the previous sections that the mutual imped-

ance is dependent on the heights and locations of the two probes,

along the width and length of the waveguide. The location of the

terminating load can also influence the mutual impedance. It was

also found that when the two probes of equal height approach

each other, the mutuaf impedance is equaf to the self impedance.

Some of the numerical results are given below for the probe

mutual impedance in the rectangular guide with a = 0.4 in, and

b = 0.9 in at the operating ‘frequency of 9.4 GHz.

The results of the mutual impedance against the probe sep-

aration distance L are shown in Figs. 4 and 5. The terminating

load is a short circuit (r = – 1) located at a distance L,= NAg/2

+ 1 from the first probe where N is any integer and Ag is the

guide wavelength. It can be seen from (17), (20), and (22) for

small L, that L, always appears under cos k:, (L – 2 L, ) and

sin k~o ( L – 2 L. ), hence changing N does not change the mutual

impedance. However, the mutuaf impedance can be changed by

v~ing 1. For l~ge L, epmn(~- 2LS) is usually negligible in (18)
since L~ is always greater than L. The mutual resistance vanishes

when 1= O, while the mutuaf reactance is maximum and oscil-

lates with a period of Ag. The major contribution to the mutuaf

reactance is from the dominant mode, since the higher order

modes decay rapidly with increasing L. However, as L ap-

proaches zero, the higher order modes are dominating, which

results in a large value of the mutuaf reactance. As 1 increases

toward A ~/4, the mutual resistance increases while the mutual
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Fig. 4, The mutual impedance against probe separation distance for different L, with dl = dz = 0.492a and yl = Yz = b/2. X X X :
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Fig. 5. Themutud impedance agtinst probe separation distance fordifferent L. with dl=0,492u, d2=0.738a, and y1=y2= b/2

X X X: [= 0,0 O O:l=Ag/8, —: [= Ag/4.
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Fig. 6. The mutual impedance against probe separation distance for different second probe heights with yl=y2= b/2 and

dl= 0.492a, l= Ag/4. O O 0: d2=0.246u, —: d2=0.492u, X X X: d2= 0.738a.
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reactance decreases. At l= Ag/4, the mutual resistance is maxi-

mum with the cos(k,o~) variation. The contribution of the

dominant mode to the mutual reactance vanishes, while that of

the higher order modes decay very rapidly with increasing L. The

mutual reactance is usually negligible, compared to the mutual

resistance when L> Ag/4.

The results of the mutual resistance and reactance when L,=

NAJ2+Ag/4 against L are shown in Figs. 6–8 for different

probe heights andprobe locations along the broad wall. In Figs.

6 and7, both probes arelocated atthe center of the broad wall,

while theprobe heights areused as variable parameters. In Fig. 8,

the probe heights are kept constant, while the probe location

along the broad wall isusedas a variable parameter. It was foun$

that the mutuaf resistance is always increased with the probe

heights and it is maximum for any pair of probes if both probes

are located at the center of the broad wall. The mutual reactance

is very large for small probe separation L and it decreases very

rapidly as L increases, since themajor contribution to the mutual

reactance is from thehigher order modes. The mutual impedance

decreases to zero when the probes are moved toward

walls.

333

the side

V. CONCLUSION

The mutual impedance between two probes located on the

broad wall of a rectangular waveguide was derived by using the

reaction concept. It was found that the mutual impedance is

dependent ontheprobe heights, their locations, their separation

distance, and the waveguide terminating load. The mutual imped-

ance of the two equaf height probes approaches the self imped-

ance as the two probes approach each other. The contribution to

the mutual resistance comes from the dominant mode, while the

contribution to the mutual reactance comes from the dominant

and the higher order modes. However, by properly adjusting the

distance of the short-circuit termination, the contribution of the

dominant mode to the mutual reactance can be eliminated, which

results in a negligible mutual reactance when the probe sep-

arations greater than a quarter guide wavelength.
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The obtained results are applicable to the design of a line

source with specific aperture distribution as a feed for a cy-

lindrical parabolic reflector. The required distribution can be

obtained by a proper design of probe penetration lengths. Since

there is 180° phase difference for every probe located half a guide

wavelength apart, the 180° phase reversal is required at every

alternate probe to provide a, uniform phase distribution.

APPENDIX

DERIVATION OF (20)

As L approaches zero, the double summation over m and n in

(18) can be modified to improve the rate of convergence. Rewrit-

ing the double summation in (18), we have

X;i=.y ‘4*)4*)
“iv 1

[~;ngoy’pm,,cm(y)’-k:1

.(e-fh.~ + re(hr(~-z~.))

“Sin(asin(%) (Al)

The term I’e~~.( ‘-- 2L~) is negligible, since L, is usually large. The

double summation in (Al) is considered separately for m = O and

m >1. For m =0, we have

xx“,, =*
n ‘+34%

where

/%.=((;)2-+2 (A3)

The summation over n in (A2) can be modified to improve the

rate of convergence as

Applying [6]

~ ‘e-”pcosnq=~[p -ln2(coshp-cosq)] (A5)
~=ln

and the trigonometric identity

sin Asin B=~cos(A– B)–*cos(A +B) (A6)

we obtain

e–(nw/b)L

:?n
‘in(%wsin(a

n=l,2,3

[{

=: ln2 cosh~–cos~(yl+ p,)
}

( }1+ln2 cosh~–cos~ (y-y,) . (A7)

Hence

: xo. =--&
n= 2,3,.. ‘m(wtm(w

[H
b ln2 cosh~L-cos f(y1+y2)).—

477

(
–ln2 cosh~l, -cos~(yl -y,)

))

b
e

7?‘- -(”/b)Lsin(%)sin(:yJ

+ .=;3,(%-be-7L),,
“Sini%+w%)]

(AS)

The summation in (A8) can also be further approximated for

small n; however, since it is a rapidly convergent series, it has

been left unmodified.

From m >1, we have

[)()~ dl

.m~,2+ l-sin2 ~ ~

m

()

01
sin2 —

2

[)

sin2
()

~ d,

. l–
kod2

()

:?

sin2 — n=l,2,3 mn

2

(cosy(Y1-Y2)-@5y (Y*+Y2))

(A9)

where

()
k:= ~2_k: (A1O)

a

The summation over n in (A9) can be transformed into a new

series with a faster convergence. Let

e–U-2+ki)1/2

f,(~)=
(m, + k:)l/2

(All)

Its Fourier transform is given by

F1(a)=2Ko{ k~(L2+a2)1/2} (A12)
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where KO is the modified Bessel function of the second kind. The

Fourier transform of ~z ( u) = cos do is given by

F2(rY)= 7r[8(a-’40) +c?(a+ ,40)]. (A13)

Using (A12) and (A13), the Fourier transform of jq ( O) =

~1(0)~z (o) can easily be found

fi(a)=Ko{k@+(a-,40 )’)”2}

+ KO(k@ +(a+ .4.)2)1’2} (A14)

Using (A14) in the Poisson summation formula

after some algebraic manipulation we have

E 7(cos;(Y1-Y2)-cosy(Y1+Y2))
rz=l,2,3 mn

b ~=:’[Ko{km(L’+(2nb-‘5
y,+ y’)’)’”}

+ K,(L(L2 +(2nb + y, - Y2)2)”2)

- KO(kM(L2 +(2nb - yl - y2)2)1’2}

- K,(km(L’ +(2nb + ~1 + Y2)2)1’2]]. (A16)

The modified Bessel function of the second kind decays rapidly

so that, as L A O, the only significant terms in (A16) are those for

n = O, hence

c %(cosy(Y1+Y2)-cosy(Y1+Y2))
n=l,2,3, mn

‘[H
c=: K, km L’ +(Y1 -y2)2)1’2)

- Ko{kWz(L2 +(Y1 + ~2)2)’’2)],

(A17)

Substituting (A17) into (A9), we have

: Ex.,, =-e
~=ln=l ‘an(w+a

“5
m=l,2,

()‘d
l–

‘in2 2a 1

kodl

()
sin’ —

2

[)sin’
()

~d2 ~

. l–
sin2 kOd2

(–)

q

2

[Ko(k~(L’+,y,-. v’)2)12]

- KO(k~(L2 +(yl + y2)2)1’2)] . (A18)

By substituting (A8) and (A18) into (18), (20) is obtained.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]
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Slow-Wave Propagation in Two Types of Cylindrical

Waveguides Loaded with a Semiconductor

CLIFFORD M. KROWNE, SENIORMEMBER,IEEE

,4b.vtract — For a parallel-plate wavegnide and a microstripline loaded

with a semiconductor slab of resistive (or active) character, the complex

propagation constant y is determined. y is found for bigher order branches

for microwave and millimeter-wave frequencies between 10 and 140 GHz,

representing a study of phase velocity slowing (and attenuation).

I. INTRODUCTION

Slow-wave structures and devices are important because of the

many applications to which they have been applied and to which

they may be applied in the future. Applications using an elec-

tron–electromagnetic interaction include devices such as the

solid-state traveling-wave amplifier, solid-state magnetron, dis-

tributed FET, and distributed amplifier. Applications using only

the electromagnetic slowing effect include the variable phase

shifter, voltage-tunable filter, delay line, and variable coupling

coefficient directional coupler.

It is the intent of this paper to obtain an idea of the

millimeter-wave slowing behavior of cylindrical waveguide struc-

tures loaded with a semiconductor slab. To accomplish this task,

two structures are examined: a parallel-plate waveguide and a

microstripline, both loaded by a dielectric– semiconductor two-
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