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reason was probably due to misalignment of the electron gun.
Output power levels were found to be comparable to that ob-
tained with the old electron gun.

VI. CONCLUSIONS

A new cylindrical gun has been developed for a low-power
tunable gyrotron. In this gun, the electrons are emitted axially
rather than radially as in a conventional MIG. Transverse motion
of the electrons is caused by the small radial component of the
accelerating electric field.

A gun like this would be suitable for any gyrotrons which have
very high magnetic compression ratios. Such high-compression
ratios may arise in situations like ours where a small electron
beam is required. Although the velocity spread in this gun is
rather high, for fixed-frequency operations, the electron-beam
quality could be improved further by optimization of the anode
geometry [12].

The new gun has been tested successfully in a tunable gyrotron
and has produced frequencies ranging from 93 to 250 GHz.
Controllable and stable operation was possible throughout the
whole range of frequencies.

The simple geometry of the cylindrical gun would perhaps
allow a grid to be added to make the gun operate in a space-charge
limited fashion. A space-charge limited gun would enable the
current to be adjusted more readily to control the output power
level; this is an advantage to a low-power source for spectro-
scopic purposes.
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Probe Mutual Impedance in a Rectangular Waveguide

A. ITTIPIBOON, MEMBER IEEE,
AND L. SHAFAI, SENIOR MEMBER IEEE

Abstract —The mutual impedance between two probes, arbitrarily located
on the broad walls of a rectangular waveguide, is derived by using the
reaction concept. This mutual impedance is found to depend on the
location and height of the probes and their separation distance. For probes
of equal height, it reduces to the probe self impedance, as the probe
separation distance approaches zero. The convergence of the solution and
the effects of a terminating short circuit on the mutual impedance are also
studied and discussed.

I. INTRODUCTION

The problem of post-like structures in a waveguide have been
studied by many investigators [1]-[5] who were interested in their
equivalent impedance. The equivalent circuits represent a power-
ful tool for investigation and design of microwave circuits, match-
ing transitions, and various filters. The couplings between wave-
guide obstacles were studied by Gruenberg [6] for posts of length
equal to a waveguide height symmetrically located in the same
transverse plane, by Chang and Khan [7] for unsymmetrical cases
for posts without gaps, and by El-Sayed [8] for unsymmetrical
cases for posts with gaps by using the variational principle. The
problem of multipost of the same length equal to a waveguide
height and with a gap in each post was studied by Joshi and
Cornick [9]-[10]. The structure was considered as a linear N-port
network with an impedance matrix obtained by applying the
reaction concept. In the present investigation, we are mainly
interested in the coupling between two probes arbitrarily located
on the broad walls of a waveguide propagating only the dominant
mode. The probe impedance as seen by the probe was previously
obtained by Lewin (1], [11] and by Collin [12]; however, in this
paper, the mutual impedance is obtained by applying the reaction
concept [13]. Since the problem in a waveguide is eqivalent to the
problem of an antenna radiating in a closed space, the radiation
field of the probe can be expanded in terms of the eigenfunctions
which form the solution space of the region under consideration.
In the present case, the fields will be expanded in terms of the
rectangular waveguide modes. The method is general and can be
used to solve similar problems in waveguides of different cross
sections by selecting their respective eigenfunctions.
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drical reflector antenna. The input or received power is through
one end of a waveguide while the other end is terminated in a
short circuit or matched termination. The power is coupled to or
from a waveguide to the line-source radiators through a large
number of probes along the waveguide. The required aperture
distribution of the line source can be obtained by properly
adjusting the probe penetration into the waveguide which can be
calculated by treating the problem as a linear N-port network.
Hence, it is necessary that the probe mutual impedance is known.

II. MuTuAL IMPEDANCE ANALYSIS

The probe antennas to be analyzed are shown in Fig. 1. The
two probes are arbitrarily located on either the same or opposite
faces of the broad side of a rectangular waveguide which propa-
gates only the dominant mode. The probe diameter is assumed to
be very small, as compared to waveguide dimensions, so that the
surface current is angular-independent and can be represented by
a current filament. The input region of the probe is considered as
a small region of the probe having the property of causing a
voltage drop ZI, when a current I flows at the input end of the
probe.

By the reaction concept [13], the mutual impedance between
the two probes is given by

Zy ‘ﬁ‘<E1’iz>=I—(_‘l)’_fE1'lzdx 1

1,(0) 1,(0) (0)1,(0)
where I,(0) and I,(0) are the input currents at the first and
second probes, respectively, E, is the radiation field of the first
probe at the location of the second probe in its absence, and I, is
the current distribution on the second probe.

By the reciprocity theorem we have

<E1’Iz>=<E2’Il>- (2)

Hence
Zy=2,.

(3)

The exact current distribution on a probe can be obtained by
the similar technique as given by Lewin [1]. The integral equation
for the current distribution on the probe can be solved by the
eigenfunction expansion technique or by the moment method.
However, it can be shown that the mutual impedance given in (1)
is stationary [13] which implies that a first-order approximation
for the current gives a second-order approximation for the im-
pedance. The simple form of the current distribution which has

been successfully used by Collin [12] and Harrington [13] is given
by

I=aIysinky(d—x)8(y—y), =x<d

=0, x>d

(4)
where d is the probe height and 8(y — y’) is the Dirac-delta
function representing the probe location at y’ along the y-axis.
The current distribution as given in (4) will be used in the
following analysis.

A. Radiation Field of the First Probe

The mutual impedance Z,; as given in (1) can be calculated
when the radiation field E, of the first probe at the second probe
is known. Since the region under consideration is a rectangular
waveguide, the radiation field of the first probe can be repre-
sented by the summation of the TE and TM modes of the
rectangular waveguide. However, instead of using the usual TE
and TM to the z-axis modes, an alternative mode that sets TE
and TM to the x-axis will be used. Since the probe current is in
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Fig. 1. Schematic diagram of probe antennas in a rectangular waveguide.
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Fag. 2. Longitudinal section of a wavegmde with two probes located on the
same broad wall

the x-direction, only TM, modes are excited. The dominant
mode TM, ; is equivalent to TE ;.

The structure under consideration is shown in Fig. 2 where
region I, z <0, is match-terminated, while region II, z > 0, is
terminated at z = L, to a load with a reflection coefficient I'. The
first probe of height 4, is located at z=0 and y=y,. The
current distribution on the first probe is given by

L=a,Isinky(dy—x)8(y—y,),
=0,

x<d;

x>d. (5
The field components in regions I and II can be obtained from
the vector potentials 4 (=a,¢) with | satisfying the scalar
Helmbholtz equation in each region. After applying the boundary
conditions which require the continuity of the tangential fields E,
and E,, and

H! — H'=1I sinky(d,—x)8(y—y). (6)

The field components in regions I and II, with the time variation
e/®! suppressed throughout, can be written as

f £ E e ()]

=

I
“.
M8

m=0n=

in region I, while in region II

1 o0 [o0]
E=— Y Y
o

Jwe On=

-cos(%x)sin(%iy) (8a)
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© oo . f oal The mutual reactance, however, consists of the dominant and the
Ho=—j3 Y kB,[e /" —Tekt-2L)] higher order modes and is given by
m=0n=1
_ "N kod, kod,
-cos(%zx) sin(n—bwy) (8b) Xu =" tan( 2 )tan( 2
where
1
2 2 172 N (sin(k,qL)-Tsin{k (L-2L
k~=<k8——(ﬂ) _(n_ﬂ)} k:oko( (k.oL) {k.o( s)})
£ a b
== jﬁmn (9) aT T x x 1
sin{ =y, ) sin| —y, | +2k
Amn = an{l + re7j2k2Ls} (10) ( byl) ( by2) 0 mgo ngl ma 2 2
mn # 01 ancm (7) -—ko
2L, (14 Te™2%:Ls) | ryg
mn T : Sln(_yl)gm (11)
Jk,abe,, b .o mT .o mm
sin (2—d1) s1n“(——2—d2)
= om0 L | Ry
=1, m>1 (12) sinz( 021) sinz( 022)
k
& = 2 > [cos(gdl)—coskodl]. (13)
2 mm
ERES) (oot 4 Tty (22 o (27, |
B. Mutual Impedance Calculation
where
Let the second probe of height d, be located at y = y, and at )
a distance z = L from the first probe. The current distribution of ko= \/ k- ( %) . (19)
the second probe is given by
L=a_Isink,(dy~x)8(y— ), x<d, Wh.en L is large, the double §ummaﬁon in (18) converges very
rapidly. However, when L is small, some modifications are
=0, x>d,. (14 required to improve the rate of the convergence.

From (1), we have C. Mutual Impedance When L Approaches Zero

Zy = [—(6111)—0 fdz E.I(x)dx. (15) When _L approaches zero, the mut'ual resistance is still giYen by
1(0) 1,(0) %o (17), while the mutual reactance in (18) can be modified to

o . improve the rate of convergence of the double summation. After
Substituting 7,(x) from (14) and E,; from (82) with z=L, we e modifications, the mutual reactance can be written as
have after some simplifications

kod kod,
X5 o tan( g 1)tan( 0 “)

2mok kod kod A7 2nkoa 2 2
Z,, = ﬂootan 0% ) on( Koda 0
ab 2 2 1 7L -
®  ® 1 5{In2{ cosh —= —cos = (3, + y»)
1 2 b b
X X —
m=0n=1 2 _ (T
kze’"[ko ( a ) ] / —ln2{coshW—bL —cos%(yl——yz)})
. mm . ma
1 51n2(—2;f11) . 31n2(2—ad2) _zeﬂw/h)Lsin(%yl)Sm(%yz)
o[ kody .2 [ kody 2a 7 T
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where 1y =y/p /€. , 201 siny ( 2a dl) sin ( P dz)
For real T, it is clear from the above equation that the mutual —2k5. 2 ey e kod 1- od
resistance R,, is mainly from the dominant mode m =0 and m=1"m si 2(%) sinz( 02 2)
n=1 and is given by i’
2 2 -
_ Mo kyd, kodz) '(Ko{km(L +()’1")’z)) }
R, =Re(Zy) = abk.oke tan( 3 )tan( >
.[cos(kzoL)+l"cos{kzO(L—2LS)}] B Ko{k (L2+(V1+y2)2)1/2})] (20)

~sin(%yl)sin(%y2). (17
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where

K, = [( ";”) —ko]l/z. (21)

The summations in (20) converge very rapidly since B, — nn/b
as n increases and K|, is the modified Bessel function of the
second kind which decays very rapidly. The detail derivation of
(20) is given in the Appendix. When the two probes are located
on the same cross-sectional plane L =0, but different locations,
ie., y; # y,, the mutual reactance is

_ kod, kodz)
XZl—ZWkOatan( 2 )“m( 2
%(ln2{1 cos—(y1 + yz)}

—an{l—cos%(y1 - yz)})

al’ A
2(1+ %.ob sm(2k,0L )) sm( byl) sm(;y2>

27 - 1
+= ) [
b n=2,3,4 BO"

29

= a5 sn( )
an sin byl by2

© sinz(mdl) sinz(in—zdz)
__2k2 Z i 1_._._.__20_ 1__—2‘1__
O"‘=1 2 sin? kody sin? kod,
2 2
(Ko{kplyr = 2l} = Ko{ kpln + 21} |- (22)

For the special case when two probes of equal height d; = d,
are located at y, = y, = b/2 in a rectangular guide with short-cir-

cuit termination (I' = —1), R,; from (17) is reduced to
27, 5 kody
R, = WSID kzOL tan . (23)

X,, from (20) can also be further simplified. It can easily be
shown as L — 0 that

1 7L T
3 <ln2{cosh7 —cos (n+ J’z)}

—1n2{cosh % —cos%(yl - J’z)})

al
_lln coshT +1
T2 7L
coshT—l
2b
=~Iln— 24
In 7L ( )

(29)
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b - sinz(—)
n=12,3,4 B()n mh 2
i [e-BOnL pe—(n7/BIL
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This term can be approximated as [12]
i [eﬁo,. ~ be—(nw/b)L] 1 k3b? i 1
n=35701 Bon ™ 27 G
k2
=0.0259 . (27

Substituting (24)—(27) into (20), it is reduced to

kod
2 [ Ko
wtan(z)

2b mL\ 7L
~ln(;r—) 2(1_7) 272 (1+cos 2k, L,))

k3b?
427 5 sin(2k, L)+00518 >

k()b2 27
'272 k:Ob

. 1n< )+00518 sin2k,, L, —2 (1—”—L)

b

o 1_ i z(md )
—2k(2) 22‘ - 2a ! KO(kmL)

kod
m =1 sm( 21)

(28)

Equations (23) and (28) are approximately the same as the probe
self-impedance obtained by Collin [12] when L =r. Similarly,
this is also true for (23) and (22) when the second probe is
approaching the first probe located at y; = b /2. Hence, it can be
concluded that when two probes of equal height approach each
other, the mutual impedance is approaching the self-impedance.

III. MutuAL IMPEDANCE WHEN TWO PROBES ARE ON

THE OPPOSITE FACE

The problem considered in this section is similar to that in the
previous section. The first probe location remains the same as in
the previous case, but the second probe is located on the opposite
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face, as shown in Fig. 3. The radiation field components of the
first probe are still the same as those given in (7) and (8). The
current distribution on the second probe is given by

L=(-ax)Lsinky(x—d;)8(y—p,). (29)

Following the similar procedure as in the previous case, the
mutual resistance and reactance are given by

—n kod k
o —
+Fcos{kzo(L—ZLS)})sin(%yl)sin(%yz) (30)
7 kod k
X21=“£tan( Ozl)tan{TO(a_dZ)}

-[ﬁ(sin(klOL)—I‘sin{ ko(L-2L,)))

7 - e 0 1
ssin| —y; jsin| —y, | +2k T 2
e
mn # 01

m+1 . ma
(—1) * +1~2$1n2<7a—d2)

2sin2{%(a— dz)}

1- 1+

(e Bml 4 TePmnL=2L0) sin(n—l;”yl) sin(—%qzyz).

(31)
The double summation in (31) is rapidly convergent for large
values of L. As L approaches zero, (31) can be modified so that

the series is still rapidly convergent. Hence, for small L, X, is
given by

_ TN kod, ﬁ
X = Srkya tan( 3 )tan{ 2 (a—dz)}

1 al T
. [E (an{cosh—b— —Cos Z(yl + J’2)>

LI

T
—1n2{cosh b COSE(}H ‘)’2)})

2a ( bk — .
_ o7 | == a/b)L
bkzO( - € +sin(k_oL)

~ T'sin { k:o(L_st)}) sin(%yl) sin(%yz)
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2 & e Bonl  po—(nm/b)L
+= ¥ -
:B()n n

. nw . nmw
~sm(—b—y1) sm(TyZ)

s 1 2
SRl Yy b kad
m=1,2.3 kp, sinz( 02 1)

—Ko{km(L2+()’1+yZ)2)l/2}]. (32)

The summations in (32) converge very rapidly, since 8,, = nw/b
for large n and K, is the modified Bessel function of the second
kind, which decays very rapidly.

IV. REsuLTs

It was shown in the previous sections that the mutual imped-
ance is dependent on the heights and locations of the two probes,
along the width and length of the waveguide. The location of the
terminating load can also influence the mutual impedance. It was
also found that when the two probes of equal height approach
each other, the mutual impedance is equal to the self impedance.
Some of the numerical results are given below for the probe
mutual impedance in the rectangular guide with a = 0.4 in, and
b=0.9 in at the operating frequency of 9.4 GHz.

The results of the mutual impedance against the probe sep-
aration distance L are shown in Figs. 4 and 5. The terminating
load is a short circuit (I' = — 1) located at a distance L, = NA /2
+ [ from the first probe where N is any integer and A, is the
guide wavelength. It can be seen from (17), (20), and (22) for
small L, that L, always appears under cosk,,(L—2L,) and
sin k2o (L —2 L), hence changing N does not change the mutual
impedance. However, the mutual impedance can be changed by
varying [. For large L, efnn(L~2L) {5 ysually negligible in (18)
since L, is always greater than L. The mutual resistance vanishes
when /=0, while the mutual reactance is maximum and oscil-
lates with a period of A,. The major contribution to the mutual
reactance is from the dominant mode, since the higher order
modes decay rapidly with increasing L. However, as L ap-
proaches zero, the higher order modes are dominating, which
results in a large value of the mutual reactance. As / increases
toward A /% the mutual resistance increases while the mutual
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reactance decreases. At /=A, /4, the mutual resistance is maxi-
mum with the cos(k,,L) variation. The contribution of the
dominant mode to the mutual reactance vanishes, while that of
the higher order modes decay very rapidly with increasing L. The
mutual reactance is usually negligible, compared to the mutual
resistance when L3> A, /4.

The results of the mutual resistance and reactance when L =
NA, /24X, /4 against L are shown in Figs. 6-8 for different
probe heights and probe locations along the broad wall. In Figs.
6 and 7, both probes are located at the center of the broad wall,
while the probe heights are used as variable parameters. In Fig. 8,
the probe heights are kept constant, while the probe location
along the broad wall is used as a variable parameter. It was found
that the mutual resistance is always increased with the probe
heights and it is maximum for any pair of probes if both probes
are located at the center of the broad wall. The mutual reactance
is very large for small probe separation L and it decreases very
rapidly as L increases, since the major contribution to the mutual
reactance is from the higher order modes. The mutual impedance

b/8, O O O: yy=b/2, ,=0b/4,

n=>b/2, p=>/2.

decreases to zero when the probes are moved toward the side
walls.

V.. CONCLUSION

The mutual impedance between two probes located on the
broad wall of a rectangular waveguide was derived by using the
reaction concept. It was found that the mutual impedance is
dependent on the probe heights, their locations, their separation
distance, and the waveguide terminating load. The mutual imped-
ance of the two equal height probes-approaches the self imped-
ance as the two probes approach each other. The contribution to
the mutual resistance comes from the dominant mode, while the
contribution to the mutual reactance comes from the dominant
and the higher order modes. However, by properly adjusting the
distance of the short-circuit termination, the contribution of the
dominant mode to the mutual reactance can be eliminated, which
results in a negligible mutual reactance when the probe sep-
aration is greater than a quarter guide wavelength.
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The obtained results are applicable to the design of a line
source with specific aperture distribution as a feed for a cy-
lindrical parabolic reflector. The required distribution can be
obtained by a proper design of probe penetration lengths. Since
there is 180° phase difference for every probe located half a guide
wavelength apart, the 180° phase reversal is required at every
alternate probe to provide a uniform phase distribution.

APPENDIX
DERIVATION OF (20)

As L approaches zero, the double summation over m and » in
(18) can be modified to improve the rate of convergence. Rewrit-
ing the double summation in (18), we have

2nok kod kod
X3 = "iaobotan( 021)tan( 022)
o0 oo 1
DD —
m=0n=1 MY 2
mn + 01 anem l:( a ) kO]
N U ;2 M7
’ 1_Sm(2ad1 1ﬁs1n(2ad2)
sin® kody sin® kod,
2 2

(e Bl 4 Tebmll—2L0))
. na . nw
~sm(7yl) sm(—yz) .

b
The term TefmnL=2L) is negligible, since L, is usually large. The
double summation in (Al) is considered separately for m = 0 and
m>1. For m =0, we have

(A1)

_ T kod, kod,
Xn:XO,,—abkotan( : )tan( : )
& LT . [ n7
Y B sm(Tyl)sm(Tyz) (A2)
n=2,3,4 n

where

nmw

: (A3)

o[ 1a)

The summation over n in (A2) can be modified to improve the
rate of convergence as

e Pol )S. (nvr )

e " in( 27
B()n b yz

& nw
Z sin(Tyl
n=2,3.4
b . . .
=— —e(”’/b”‘sm(%yl) sm(%yz)

k7
i e Bonl  pe—tnu/b)L naw na
" B . nw . (nw
53( Bon an )Sm( b yl)sm( b yz)
b & et g . {nw
+;n=12‘23%” Sm(T)’l)Sl (Tyz). (A4)
Applying [6]
%1, 1
) € Pcoan=§[p—ln2(coshpwcosq)] (A35)
n=1
and the trigonometric identity
. . 1 1 \
smAs1nB=§cos(A—B)—Ecos(A+B) (A6)
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we obtain

b e (nm/PIL

T

oo
3 sin(lyl)sin(-n—wyz)
n=1,2,3 b b
L
= % [1n2{cosh% —cos %(y1 + yz)}

+ln2{cosh7—bL—cos%(yl—yz)}]. (A7)

Jon|

b

Hence

kod,
2

b
. [I;; (an{cosh

a w
—1n2{cosh;L —cos Z(yl - J’2)})

(Fn)sn (5]
>

(e—Bo,,L be—(nm/D)L
w234\ Pon mn
. [ nw . [ nT
‘sm(TYI)Sm(Tyz) :

The summation in (A8) can also be further approximated for
small n; however, since it is a rapidly convergent series, it has
been left unmodified.

From m >1, we have

kod,
2

T
L—COSg(yﬁyz)}

b _ .
——e (/Plgip
@

(A8)

kody

__ Moko tan
ab

Juof

kodz)

na nw
. COST()q—)’z)_COS A (y1+)’2))
(A9)
where

ma

a

(2

The summation over n in (A9) can be transformed into a new
series with a faster convergence. Let

(A10)

e L(?+ k2N

file)="——77. (Al1)
(wz + k,zn)l/2
Its Fourier transform is given by
Fi(a) =2Ko{ k, (L? +a?)"?} (A12)
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where K, is the modified Bessel function of the second kind. The
Fourier transform of f,(w) = cos wA, is given by

Fy(a)=n[8(a—Ay)+8(a+4,)]. (A13)

Using (A12) and (Al13), the Fourier transform of fy(w)=
f1(w@)fo(w) can easily be found

n1/2
F(@) = Kol k(224 (= 4,))) 7}
+ KO{ k(L +(at A0)2)1/2} . (Al4)
Using (A14) in the Poisson summation formula

£ ()t

n=—00

> R(nb)

h=—00

(A15)

after some algebraic manipulation we have

x e“anL nmw nmw
——(cos—b—(y1 - yz)—Cos—b*()ﬁ + )’2))

-2 > [Ko{ (2 + b=y 4+ 2)") )

n=—o0

+ KO{ L>+(2nb+y, — y2)2)1/2}

o (
- Ko{km(L2 +(2nb— y, — y2)2)1/2>

— Kol ko L2+ (200 + 3, +y2)2)1/2}]. (A1)

The modified Bessel function of the second kind decays rapidly
so that, as L — 0, the only significant terms in (A16) are those for
n = 0, hence

0 =Bl

E Bm’l

nw nmw
(cos—(y1 + ) —cos (o + Y2))
n=1,2,3, b b

b [Ko{ km(L2 +(n— )’2)2)1/2}

- KO{ km(Lz +(n+ J’2)2)1/2}]'

(Al7)
Substituting (A17) into (A9), we have

[o2] «©
. Noko k0d1) (kodz)
m2=:1 nz=:1 X === tan( 5 |tan

2
%0 sinz(»idl)
2 |-
m=12, sin2 kodl
2
.o (mm
. sin ( 22 d, 1
sinz(kodz) ks,
2

.[KO{ k(224 (1= 1))

- Ko{ o (L2 4 (3 + yz)z)m}]. (A18)

By substituting (A8) and (A18) into (18), (20) is obtained.
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Slow-Wave Propagation in Two Types of Cylindrical
Waveguides Loaded with a Semiconductor

CLIFFORD M. KROWNE, SENIOR MEMBER, IEEE

Abstract —For a parallel-plate waveguide and a microstripline loaded
with a semiconductor slab of resistive (or active) character, the complex
propagation constant y is determined. v is found for higher order branches
for microwave and millimeter-wave frequencies between 10 and 140 GHz,
representing a study of phase velocity slowing (and attenuation).

I. INTRODUCTION

Slow-wave structures and devices are important because of the
many applications to which they have been applied and to which
they may be applied in the future. Applications using an elec-
tron—electromagnetic interaction include devices such as the
solid-state traveling-wave amplifier, solid-state magnetron, dis-
tributed FET, and distributed amplifier. Applications using only
the electromagnetic slowing effect include the variable phase
shifter, voltage-tunable filter, delay line, and variable coupling
coefficient directional coupler.

It is the intent of this paper to obtain an idea of the
millimeter-wave slowing behavior of cylindrical waveguide struc-
tures loaded with a semiconductor slab. To accomplish this task,
two structures are examined: a parallel-plate waveguide and a
microstripline, both loaded by a dielectric—semiconductor two-
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